4.6 Article

Hydrogelation and Self-Assembly of Fmoc-Tripeptides: Unexpected Influence of Sequence on Self-Assembled Fibril Structure, and Hydrogel Modulus and Anisotropy

期刊

LANGMUIR
卷 26, 期 7, 页码 4990-4998

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la903678e

关键词

-

资金

  1. EPSRC [EP/F048114/1, EP/G026203/1]
  2. EPSRC [EP/F048114/1, EP/G026203/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/G026203/1, EP/F048114/1] Funding Source: researchfish

向作者/读者索取更多资源

The self-assembly and hydrogelation properties of two Fmoc-tripeptides [Fmoc = N-(fluorenyl-9-methoxycarbonyl)] are investigated, in borate buffer and other basic solutions. A remarkable difference in self-assembly properties is observed comparing Fmoc-VLK(Boc) with Fmoc-K(Boc)LV, both containing K protected by N-epsilon-tert-butyloxycarbonate (Boc). In borate buffer, the former peptide forms highly anisotropic fibrils which show local alignment, and the hydrogels show flow-aligning properties. In contrast, Fmoc-K(Boc)LV forms highly branched fibrils that produce isotropic hydrogels with a much higher modulus (G' > 10(4) Pa), and lower concentration for hydrogel formation. The distinct self-assembled structures are ascribed to conformational differences, as revealed by secondary structure probes (CD, FTIR, Raman spectroscopy) and X-ray diffraction. Fmoc-VLK(Boc) forms well-defined beta-sheets with a cross-beta X-ray diffraction pattern, whereas Fmoc-KLV(Boc) forms unoriented assemblies with multiple stacked sheets. Interchange of the K and V residues when inverting the tripeptide sequence thus leads to substantial differences in self-assembled structures, suggesting a promising approach to control hydrogel properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据