4.6 Article

Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram

期刊

LANGMUIR
卷 26, 期 11, 页码 7833-7842

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9047227

关键词

-

资金

  1. U.S. National Science Foundation [0622849]
  2. Directorate For Engineering
  3. Div Of Industrial Innovation & Partnersh [0749461] Funding Source: National Science Foundation
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [0622849] Funding Source: National Science Foundation

向作者/读者索取更多资源

The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing Mania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central hump. or a uniform layer. Simulations and experiments are found in very good agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据