4.6 Article

Mesoporous Silica Encapsulating Upconversion Luminescence Rare-Earth Fluoride Nanorods for Secondary Excitation

期刊

LANGMUIR
卷 26, 期 11, 页码 8850-8856

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la904596x

关键词

-

资金

  1. NSF of China [20890121, 20721063, 20821140537, 20871030]
  2. PRC [2009CB930400]
  3. Shanghai Leading Academic Discipline Project [B108]

向作者/读者索取更多资源

Mesoporous silica encapsulating upconversion luminescence NaYF4 nanorods with uniform core-shell structures have been successfully synthesized by the surfactant-assistant sol-gel process. The thickness of ordered mesoporous silica shells can be adjusted from 50 to 95 nm by varying the amount of hydrolyzed silicate oligomer precursors from tetraethyl orthosilicate (TEOS), which further influences the BET surface area, pore volume, and the luminescence intensity. After coated with mesoporous silica shells, the hydrophobic nanorods is rendered to hydropholic simultaneously. The obtained beta-NaYF4@-SiO(2@)mSiO(2) core-shell nanorods possess high surface area (71.2-196 m(2) g(-1)), pore volume (0.07-0.17 cm(3) g(-1)), uniform pore size distribution (2.3 nm), and accessible channels. Furthermore, the uniform core-shell nanorods show strong upconversion luminescence property similar to the hexagonal upconversion cores. The open mesopores can not only provide convenient transmission channels but also offer the huge location for accommodation of large molecules, such as fluorescent dyes and quantum dots. The secondary-excitation fluorescence of Rhodamine B is generated from the upconversion rare-earth fluoride nanorods cores to the fluorescent dyes loaded in the mesoporous silica shells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据