4.6 Article

On-Chip Dielectrophoretic Coassembly of Live Cells and Particles into Responsive Biomaterials

期刊

LANGMUIR
卷 26, 期 5, 页码 3441-3452

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la902989r

关键词

-

资金

  1. National Science Foundation [0506701, 0609087]
  2. Directorate For Engineering
  3. Div Of Chem, Bioeng, Env, & Transp Sys [0506701] Funding Source: National Science Foundation
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [0609087] Funding Source: National Science Foundation

向作者/读者索取更多资源

We report how live cells and functionalized colloidal particles can be coassebled into a variety of freely suspended bioactive structures using dielectrophoresis on a chip. Alternating electric fields were applied to dilute suspensions of yeast (S. cerevisiae) and NIH/3T3 mouse fibroblast cells to yield 1D chains and 2D arrays. The effects of voltage, frequency, pH. electrolyte concentration, cell concentrations, and particle size on the assembly process were investigated in detail. Numerical simulations of the field intensity and energy allow the capture of the dynamics of cell-cell and cell-particle assembly. The simulation results illustrate that the electric field draws the functionalized synthetic particles between the cells and enables the formation of permanent chains and monolayer membranes composed of alternating, cells and particles.The cell structures were bound into permanent structures by different types of functionalized synthetic particles and ligands that attached to the cells through biospecific or electrostatic interactions. The technique allowed the fabrication of magnetically responsive biomaterials that could be manipulated and transported into and out of the microchambers where they were formed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据