4.6 Article

Hydrogen Electrosorption into Pd-Cd Nanostructures

期刊

LANGMUIR
卷 26, 期 10, 页码 7632-7637

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9044072

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation of Innovation (CFI)
  3. NSERC

向作者/读者索取更多资源

Hydrogen-absorbing materials are crucial for both the purification and storage of hydrogen. Pd and Pd-based alloys have been studied extensively for their use as both hydrogen dissociation catalysts and hydrogen selective membrane materials. It is known that incorporating metal atoms of different sizes into the Pd lattice has a major impact on the hydrogen absorption process. In this paper, hydrogen electrosorption into nanostructured Pd-Cd alloys has been studied for different compositions of Cd that varied from 0 to 15 at. %. The low cost of Cd makes it an attractive material to combine with Pd for hydrogen sorption. A combination of chronoamperometry and cyclic voltammetric experiments was used to determine the ratio of the H/(Pd + Cd) and the kinetics of hydrogen sorption into these Pd-Cd alloys at different potentials. It was found that the maximum H/(Pd + Cd) value was 0.66 for pure Pd, and this decreased with increasing the amount of Cd. Also, the alpha (solid solution) to beta phase (metal hydride) hydrogen transition was determined to be the slowest step in the absorption process and was practically eliminated when an optimum amount of Cd atoms was doped (i.e., Pd-Cd(15%)). With increasing the amount of Cd, more hydrogen was absorbed into the Pd-Cd nanostructures at the higher potentials (the alpha phase region). The faster kinetics, along with the decrease in the phase transition of hydrogen sorption into the Pd-Cd nanostructures when compared to pure Pd, makes the Pd-Cd nanostructures attractive for use as a hydrogen dissociation catalytic capping layer for other metal hydrides or as a hydrogen selective membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据