4.6 Article

Metal Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation

期刊

LANGMUIR
卷 26, 期 11, 页码 8743-8750

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la904502h

关键词

-

向作者/读者索取更多资源

MIL-101 is a chromium terephthalate-based mesoscopic metal organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO2 and CH4 in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic structures of MIL-101 are constructed from experimental crystallographic data, energy minimization, and quantum mechanical optimization. The adsorption isotherm of CO2 predicted from molecular simulation agrees well with experiment and is relatively insensitive to the method (Merz Kollman or Mulliken) used to estimate the framework charges. Both the united-atom and live-site models of CH4 predict the isotherm fairly well, though the former overestimates and the latter underestimates. Adsorption first occurs in the microporous supertetrahedra at low pressures and then in the mesoscopic cages with increasing pressure. In the dehydrated MIL-101, more adsorbate molecules arc located near the exposed Cr-2 sites than the fluorine saturated Cr-1 sites. The terminal water molecules in the hydrated MIL-101 act as additional interaction sites and enhance adsorption at low pressures. This enhancement is more pronounced for CO2 than for CH4, because CO2 is quadrapolar and interacts more strongly with the terminal water molecules. At high pressures, however, the reverse is observed, as the presence of terminal water molecules reduces free volume and adsorption. For the adsorption of CO2/CH4 mixture, a higher selectivity is found in the hydrated MIL-101.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据