4.6 Article

Consequences of Anode Interfacial Layer Deletion. HCl-Treated ITO in P3HT:PCBM-Based Bulk-Heterojunction Organic Photovoltaic Devices

期刊

LANGMUIR
卷 26, 期 4, 页码 2584-2591

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la902879h

关键词

-

资金

  1. BP Solar
  2. AFRL Materials & Manufacturing Directorate
  3. DOE [DE-FG02-06ER46320]
  4. Army Research Office [ARO W911NF-05-1-0177]
  5. NSF [ECS-0609064]
  6. NSF-MRSEC program through the Northwestern Materials Research Center [DMR-0520513]

向作者/读者索取更多资源

In studies to simplify the fabrication of bulk-heterojunction organic photovoltaic (OPV) devices, it was found that when glass/tin-doped indium oxide (ITO) substrates are treated with dilute aqueous HCl solutions, followed by UV ozone(UVO), and then used to fabricate devices of the structure glass/ITO/P3HT:PCBM/LiF/Al, device performance is greatly enhanced. Light-to-power conversion efficiency (Eff) increases from 2.4% for control devices in which the ITO surface is treated only with UVO to 3.8% with the HCl + UVO treatment-effectively matching the performance of an identical device having a PEDOT:PSS anode interfacial layer. The enhancement originates from increases in V-OC from 463 to 554 mV and FF from 49% to 66%. The modified-ITO device also exhibits a 4x enhancement in thermal stability versus an identical device containing a PEDOT:PSS anode interfacial layer. To understand the origins of these effects, the ITO surface is analyzed as a function of treatment by ultraviolet photoelectron spectroscopy work function measurements, X-ray photoelectron spectroscopic composition analysis, and atomic force microscopic topography and conductivity imaging. Additionally, a diode-based device model is employed to further understand the effects of ITO Surface treatment on device performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据