4.6 Article

Phase Separation of Lipid Microdomains Controlled by Polymerized Lipid Bilayer Matrices

期刊

LANGMUIR
卷 26, 期 6, 页码 4126-4129

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9032892

关键词

-

资金

  1. Promotion Budget for Science and Technology (MEXT)
  2. Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN)

向作者/读者索取更多资源

We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine(DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phoshoplipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据