4.6 Article

pH-Dependent Distribution of Chlorin e6 Derivatives across Phospholipid Bilayers Probed by NMR Spectroscopy

期刊

LANGMUIR
卷 26, 期 13, 页码 11085-11094

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la100679y

关键词

-

资金

  1. Swiss National Science Foundation (SNF) [200021-119691]
  2. Swiss National Science Foundation (SNF) [200021_119691] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The pH-dependent membrane adsorption and distribution of three chlorin derivatives, chlorin e6 (CE), rhodin G7 (RG), and monoaspartyl-chlorin e6 (MACE), in the physiological pH range (pH 6-8) were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. The chlorin derivatives were characterized with respect to their aggregation behavior, the pK(a) values of individual carboxylate groups, the extent of membrane adsorption, and their flip-flop rates across the bilayer membrane for pH 6-8. External membrane adsorption was found to be lower for RG than for CE and MACE. Both electrostatic interactions and the extent of aggregation seemed to be the main determinants of membrane adsorption. Rate constants for chlorin transfer across the membrane were found to correlate strongly with the of the surrounding medium, in particular, for CE and RG. In acidic solution, CE and RG transfer across the membrane was strongly accelerated, and in basic solution, all compounds were retained, mostly in the outer monolayer. In contrast, MACE flip-flop across the membrane remained very low even at pH 6. The protonation of ionizable groups is suggested to be a major determinant of chlorin transfer rates across the bilayer. pK(a) values of CE and RG were found to be between 6 and S. and two of the carboxylate groups in MACE had pK(a) values below 6. For CE and RG, the kinetic profiles at acidic pH indicated that the initial fast membrane distribution was followed by secondary steps that are discussed in this article.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据