4.6 Article

Retention of Latex Colloids on Calcite as a Function of Surface Roughness and Topography

期刊

LANGMUIR
卷 26, 期 7, 页码 4743-4752

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9033595

关键词

-

资金

  1. German Ministry of Education and Research (BMBF)
  2. German Research Foundation (DFG) [03G0719A]
  3. Federal Ministry of Economics and Technology (BMWi) [KOLLORADO-2]

向作者/读者索取更多资源

Adhesion of colloidal particles to mineral and rock surfaces is important for environmental and technological processes. Surface topography variations of mineral and rock surfaces at the submicrometer scale may play a significant role in colloid retention in the environment. Here, we present colloid deposition data on calcite as a function of submicrometer surface roughness based on surface data over a field of view of several square millimeters, sufficient to trace the pattern of common inhomogeneities on mineral surfaces. A freshly cleaved calcite crystal was reacted to produce a well-defined etch pit density of similar to 3.4 +/- 1.2 to 8.3 +/- 1.6 [10(-3) mu m(-2)] and etch pit depth ranging from similar to 4 to 50 nm. This surface was exposed at the point of zero charge (PZC) of calcite to a colloidal suspension. We used a bimodal particle size distribution of nonfunctionalized polystyrene latex spheres with average diameters of 499 and 903 nm. Vertical scanning interferometry (VSI) was applied to quantify calcite surface topography variations its well as the retention of latex colloids. For both particle sizes, the experiments showed a positive correlation between the surface roughness (Rq) and the number of adsorbed particles. Etch pits were preferred sites for colloidal deposition in contrast to surface steps. The majority of adsorbed particles were trapped at etch pit walls compared to etch pit bottoms. Increasing pit density (D) and depth (d) resulted in an increase of colloidal retention. Deposition of smaller particles exceeded that of the larger-sized fraction of the bimodal system investigated here. Our results show that colloidal deposition at rough mineral and rock surfaces is an important geochemical process. The results about surface roughness dependent particle adsorption will foster the understanding and predictability of colloidal retention for a multitude of natural and technical processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据