4.6 Article

Azobenzene-Based Light-Responsive Hydrogel System

期刊

LANGMUIR
卷 25, 期 15, 页码 8442-8446

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la804316u

关键词

-

资金

  1. Microelectronics Advanced Research Corporation (MARCO)
  2. Focus Center Research Program (FCRP)
  3. Center on Functional Engineered NanoArchitectonics (FENA)

向作者/读者索取更多资源

A deoxycholic acid-modified beta-cyclodextrin derivative (2) and an azobenzene-branched poly(acrylic acid) copolymer (3) were prepared, and the association and dissociation of 2 with the trans/cis-azobenzene units in 3 were characterized by UV/vis spectroscopy, induced circular dichroism, and H-1 NMR spectroscopy. The experimental results indicate that the trans-azobenzene units are bound strongly within the cavities of 2 whereas the cis-azobenzene is not bound at all. A supramolecular inclusion complex (1), formed by 2 and 3, is accompanied by the formation of a hydrogel. The light-responsive gel-to-sol and sol-to-gel phase transitions of the hydrogel, induced by trans-cis photoisomerization of the azobenzene units, were investigated. In the hydrogel system, the trans-azobenzene units in 3 are included inside the hydrophobic cavity of 2. Upon photoirradiation with UV light of 355 nm, the hydrogel is converted efficiently to the sol phase because the trans-azobenzene units are converted photochemically to their cis configurations, whereupon the resulting cis-azobenzene units dissociate from 2. The hydrogel can be recovered from the sol phase by photoirradiation with visible light of 450 nm. The swelling ratio for fresh hydrogel samples, which was found to be 8.7 +/- 0.7, was measured for a number of gel-to-sol and sol-to-gel phase-transition cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据