4.6 Article

Synthesis and Characterization of Accessible Metal Surfaces in Calixarene-Bound Gold Nanoparticles

期刊

LANGMUIR
卷 25, 期 18, 页码 10548-10553

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9013174

关键词

-

资金

  1. National Science Foundation (NSF) [DMR 0444761]
  2. Chevron Corporation
  3. National Center for Electron Microscopy, Lawrence Berkeley Laboratory
  4. U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Use of organic ligands to partially passivate nanoparticles against sintering yet retain a degree of small molecule accessibility to the metal surface has been a lofty goal in functional materials synthesis, which in principle also enables the design of preferred electronic and steric environments on a nanoparticle surface. Catalysis using gold in particular requires donor ligands that facilitate an electron-rich metal surface and generalizable strategies for dealing with deactivation due to sintering. Here, synthesis and characterization of gold nanoparticles postsynthetically modified with the chelating ligand cone-5,11,17,23,29,3 5-hexa (tert-butyl)-37,39,41-tris(diphenylphosphinomethoxy)-38,40, 42-trimethoxycalix[6]arene (1) is reported. In solution as well as when supported on the surface of TiO2, nanoparticles modified with tripodal calix[6]arene phosphine ligand 1 demonstrate enhanced protection against sintering relative to unmodified, tetraoctylammonium bromide-surfactant-stabilized gold nanoparticles. In between adsorbed calixarene ligands, there is accessible gold surface area in these nanoparticles, and this is measured quantitatively for the first time for a calixarene-modified nanoparticle, using a newly developed fluorescence methodology involving 2-naphthalenethiol as a relevant chemisorption probe molecule. Ligand steric bulk critically influences amount of accessible surface on the metal nanoparticle since the use of a smaller calix[4]arene ligand (MBC) results in a 7-fold lower accessible surface area relative to using 1 under otherwise similar conditions. In addition, surface coverage of 1 controls accessible surface area in an unintuitive fashion: a 4-fold increase in accessible metal surface area is observed upon increasing the surface coverage of 1 to be 1.5-fold higher than the minimum required for surface saturation. This is presumably the result of a more open ligand packing of 1 at higher Surface coverages, which allows greater accessibility to 2-napthalenethiol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据