4.6 Article

Gold Nanoparticles: Past, Present, and Future

期刊

LANGMUIR
卷 25, 期 24, 页码 13840-13851

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9019475

关键词

-

资金

  1. Office of Naval Research
  2. National Science Foundation

向作者/读者索取更多资源

This perspective reviews recent developments in the synthesis, electrochemistry, and optical properties of gold nanoparticles, with emphasis on papers initiating the developments and with all eye to their consequences, Key aspects of Au nanoparticle synthesis have included the two-phase synthesis of thiolated nanoparticles, the sequestration and reduction of Au salts within dendrimers, the controlled growth of larger particles of well-defined shapes via the seeded approach, and the assembling of a variety of nanoparticle networks and nanostructures. The electrochemistry of thiolated All nanoparticles is systemized as regions of bulk-continuum voltammetry, voltammetry reflective of quantized double-layer charging, and molecule-like voltammetry reflective of molecular energy gaps. These features are principally determined by the nanoparticle core. Interesting multielectron Au nanoparticle voltammetry is observed when the thiolate ligand shell has been decorated with redox groupings. Another development is that Au nanoparticles were discovered to exhibit unanticipated properties as heterogeneous catalysts, starting with the low-temperature oxidation of CO. Substantial progress has also been made in understanding the Surface plasmon spectroscopy of Au nanoparticles and nanorods. The need to investigate the optical properties of metal particles of a single, well-defined shape and size has motivated the development of a number of new techniques, leading to the study of electron transfer and redox catalysis oil single nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据