4.6 Article

Analysis of Force Interactions between AFM Tips and Hydrophobic Bacteria Using DLVO Theory

期刊

LANGMUIR
卷 25, 期 12, 页码 6968-6976

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la9001237

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Microbial adhesion to surfaces and interfaces is strongly influenced by their structure and physicochemical properties. We used atomic force microscopy (AFM) to measure the forces between chemically functionalized AFM tips and two bacterial species exhibiting different cell surface hydrophobicities, measured as the oil/water contact angle (theta): Acinetobacter venetianus RAG-1 (theta = 56.4 degrees) and Rhodococcus erythropolis 20S-E1-c (theta= 152.9 degrees). The forces were measured as the AFM tips, coated with either hydrophobic (octadecane) or hydrophilic (undecanol) groups, approached the bacterial cells in aqueous buffer. The experimental force curves between the two microbial cells and functionalized AFM probes were not successfully described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid stability. To reconcile the discrepancy between theory and experiments, two types of extended DLVO models were proposed. The first modification considers an additional acid-base component that accounts for attractive hydrophobic interactions and repulsive hydration effects. The second model considers an additional exponentially decaying steric interaction between polymeric brushes in addition to the acid-base interactions. These extended DLVO predictions agreed well with AFM experimental data for both A. venetianus RAG-1, whose surface consists of an exopolymeric capsule and pili, and R. erythropolis 20S-E1-c, whose surface is covered by an exopolymeric capsule. The extended models for the bacteria-AFM tip force-distance curves were consistent with the effects of steric interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据