4.6 Article

Methanol Electrooxidation on PtRu Bulk Alloys and Carbon-Supported PtRu Nanoparticle Catalysts: A Quantitative DEMS Study

期刊

LANGMUIR
卷 25, 期 13, 页码 7725-7735

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la900305k

关键词

-

资金

  1. U.S. Department of Energy
  2. NYSTAR

向作者/读者索取更多资源

Methanol electrooxidation on smooth Pt and PtRu bulk alloys and carbon-supported Pt and PtRu nanoparticle catalysts has been studied using cyclic voltammetry and potential step chronoamperometry combined with differential electrochemical mass spectrometry (DEMS). The current efficiencies for generated CO2 and methyl formate were calculated from Faradaic current (coulometric charge) and mass spectrometric currents (charges) at m/z = 44 and m/z = 60. The effects of Ru content in PtRu catalysts, catalyst loading/roughness, and the concentration of sulfuric acid as supporting electrolyte on the reaction kinetics and product distribution during methanol electrooxidation have been investigated. The results indicate that Pt-rich PtRu alloys and carbon-supported PtRu catalysts with ca. 20 atom % Ru content exhibit the highest catalytic activity for methanol electrooxidation, that is, the highest Faradaic current and the highest current efficiency for CO2 generation at low applied potentials. As the catalyst loading/roughness increases, the current efficiency for CO2 formation increases due to the further oxidation of soluble intermediates (formaldehyde and formic acid). At high concentrations of sulfuric acid, the electrooxidation of methanol was suppressed; both the oxidative current and the current efficiency of CO2 decreased, likely due to sulfate/bisulfate adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据