4.6 Article

In Vitro Method to Characterize Diffusion of Dye from Polymeric Particles: A Model for Drug Release

期刊

LANGMUIR
卷 25, 期 17, 页码 10007-10013

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la900694k

关键词

-

资金

  1. EPSRC [EP/F031122/1] Funding Source: UKRI

向作者/读者索取更多资源

The release profile of a drug delivery system is a key factor in determining its efficacy. In the case of a polymeric particle based system, the release profile is a function of several parameters including particle diameter and porosity. The effects of these parameters are usually investigated experimentally using UV-spectroscopy. Predicting the drug release profile from particles as a result of the interaction of many parameters is desirable in order to facilitate the design of more efficient drug delivery particles. In this work, a quantitative method of determining the diffusion profile is developed which removes the need for repetitive experimentation. Particles of polymethylsilsesquioxane were prepared using coaxial electrohydrodynamic atomization and collected in solutions containing different concentrations of Evans blue dye (6, 0.6, and 0.06 ng/mL) which was used to simulate a drug. The dye release profile was calculated by solving the unsteady state diffusion equation for parameters used in the experiments. It was demonstrated that the dye release profile from particles with diameters ranging from 400 nm to 9 mu m can be calculated using a simple equation without addition of a dissolution term, if the volume ratio of surrounding liquid to particle in the unsteady second order solution is substituted by the surface area of particles to liquid volume ratio. The calculated data are found to be in good agreement with the experimental, indicating that this method can be used to determine the diffusion coefficient as a function of particle diameter and material. This study represents it crucial step toward developing a full drug release model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据