4.6 Article

Wetting on nanoporous alumina surface: Transition between Wenzel and Cassie states controlled by surface structure

期刊

LANGMUIR
卷 24, 期 18, 页码 9952-9955

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la801461j

关键词

-

向作者/读者索取更多资源

This paper reports a systematic study on the relationship between surface structure and wetting state of ordered nanoporous alumina surface. The wettability of the porous alumina is dramatically changed from hydrophilicity to hydrophobicity by increasing the hole diameter, while maintaining the hole interval and depth. This phenomenon is attributed to the gradual transition between Wenzel and Cassie states which was proved experimentally by comparing the wetting behavior on these porous alumina surfaces. Furthermore, the relationship between surface wettability and hole depth at a fixed hole interval and diameter was investigated. For those porous alumina with relatively larger holes in diameter, transition between Wenzel and Cassie states was also achieved with increasing hole depth. A capillary-pressure balance model was proposed to elucidate the unique structure-induced transition, and the criteria for the design and construction of a Cassie wetting surface was discussed. These structure-induced transitions between Wenzel and Cassie states could provide further insight into the wetting mechanism of roughness-induced wettability and practical guides for the design of variable surfaces with controllable wettability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据