4.6 Article

Interaction of Nanometric Clay Platelets

期刊

LANGMUIR
卷 24, 期 20, 页码 11406-11413

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la801118v

关键词

-

向作者/读者索取更多资源

The free energy of interaction between two nanometric clay platelets immersed in an electrolyte solution has been calculated using Monte Carlo simulations as well as direct integration of the configurational integral. Each platelet has been modeled as a collection of charged spheres carrying a unit charge-the face of a platelet contains negative charges, and the edge, positive charges. The calculations predict that a configuration of overlapping coins is the global free energy minimum at intermediate salt concentrations (10-100 mM). A second weaker minimum, corresponding to the well-known house of cards configuration, also appears in this salt interval. At low salt concentrations the electrostatic repulsion dominates, while at intermediate concentrations electrostatic interactions alone can create a net attraction between the platelets. At sufficiently high salt content (>200 mM), the van der Waals interaction takes over and the net interaction becomes attractive at essentially all separations. From the calculated free energy and its derivative, we can derive a yield stress and elasticity modulus in fair agreement with experiment. The roughness of the platelets affects the quantitative behavior of the free energy of interaction but does not alter the results in a qualitative way. From the variation of the free energy of interaction, we would tentatively describe the phase behavior as follows: At low salt, the interaction is strongly repulsive and the dispersion should appear as a solid (repulsive gel). With increasing salt concentration, the repulsion is weakened and a liquid phase appears (sol). A further increase of the salt content leads a second solid phase (attractive gel) governed by attractive interactions between the platelets. Finally, at sufficiently high salinity, the clay precipitates due to van der Waals forces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据