4.6 Article

Solution properties of asphaltenes

期刊

LANGMUIR
卷 24, 期 8, 页码 3709-3717

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la702611s

关键词

-

向作者/读者索取更多资源

Ultracentrifugation has been used to produce asphaltene fractions of reduced polydispersity. The structure of these asphaltene fraction solutions has been investigated using viscosity and X-ray scattering (SAXS) measurements as a function of concentration. The relative viscosities of the solutions were found to be fraction-dependent: intrinsic viscosities, radii of gyration, and second viriel coefficients followed a power law with molar mass M-w. A flat disc model succeeded in describing scattering data but failed to take viscosity data into account. By contrast, a fractal model has been found to be consistent with dependence of all measured parameters. Asphaltene-in-toluene solutions were found to form nanometric mass fractal aggregates of fractal dimension 2.1, which in consequence trapped solvent. When, instead of concentration, effective volume fractions are used, the relative viscosities of fractions merge on a master Curve which can be fitted by a hard sphere model. In addition, the reduced osmotic moduli deduced from scattering measurements of the different solutions, when expressed as a function of a concentration adimensional parameter, merge again on a master curve which is in accordance with the hard sphere behavior. The viscosities of solutions can be fully predicted from structure considerations if the ratio of hydrodynamic to gyration radius is taken as 0.6. This ratio is found consistent with the fractal description of the aggregates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据