4.6 Article

Patterned nonadhesive surfaces: Superhydrophobicity and wetting regime transitions

期刊

LANGMUIR
卷 24, 期 4, 页码 1525-1533

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la702239w

关键词

-

向作者/读者索取更多资源

Nonadhesive and water-repellent surfaces are required for many tribological applications. We study mechanisms of wetting of patterned superhydrophobic Si surfaces, including the transition between various wetting regimes during microdroplet evaporation in environmental scanning electron microscopy (ESEM) and for contact angle and contact angle hysteresis measurements. Wetting involves interactions at different scale levels: macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We propose a generalized formulation of the Wenzel and Cassie equations that is consistent with the broad range of experimental data. We show that the contact angle hysteresis involves two different mechanisms and how the transition from the metastable partially wetted (Cassie) state to the homogeneously wetted (Wenzel) state depends upon droplet size and surface pattern parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据