4.6 Article

Influence of graft interface polarity on hydration/dehydration of grafted thermoresponsive polymer brushes and steroid separation using all-aqueous chromatography

期刊

LANGMUIR
卷 24, 期 19, 页码 10981-10987

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la801949w

关键词

-

资金

  1. National Institute of Environmental Science (NIES)
  2. Ministry of Environment, Japan

向作者/读者索取更多资源

We have prepared poly(N-isopropylacrylamide) (PIPAAm) brush-grafted surfaces with varied temperature-responsive hydrophobic properties through surface-initiated atom transfer radical polymerization (ATRP). These temperature-responsive surfaces were characterized by chromatographic analysis using modified silica beads as a chromatographic stationary phase in aqueous mobile phase. Mixed silane self-assembled monolayers (SAMs) comprising ATRP initiator and silanes with various terminal functional groups were formed on the silica bead Surfaces. IPAAm was then polymerized by ATRP using the CuCl/CuCl2/Me6TREN catalyst system in 2-propanol at 25 degrees C for 16 h. The chromatographic retention behavior of steroids on the resulting PIPAAm brushes made on more polar silane components was distinct from that on more apolar silane interfaces. Retention times for steroids on PIPAAm mixed apolar silane graft interfaces were significantly longer than those on analogous polar silane interfaces due to enhanced dehydration of PIPAAm brushes on apolar silane-grafted surfaces. Changes in retention factor, K, on polar silane PIPAAm-grafted interfaces were relatively large compared to that on apolar PIPAAm grafted interfaces due to larger hydration/dehydration alterations of grafted PIPAAm brushes on the former surfaces. Applied step-temperature gradients from 50 to 10 degrees C show that PIPAAm brushes on polar silane interfaces tend to hydrate more, leading to shorter retention times. In conclusion, the polarity of the grafted interface significantly influences the grafted PIPAAm brush hydration/dehydration characteristics and subsequently also the temperature-modulated separation of bioactive compounds in all-aqueous chromatography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据