4.6 Article

Clustering versus percolation in the assembly of colloids coated with long DNA

期刊

LANGMUIR
卷 24, 期 9, 页码 5118-5123

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la7036789

关键词

-

向作者/读者索取更多资源

We report an experimental study in which we compare the self-assembly of 1 mu m colloids bridged through hybridization of complementary single-stranded DNA (ssDNA) strands (12 bp) attached to variable-length double-stranded DNA spacers that are grafted to the colloids. We considered three different spacer lengths: long spacers (48 500 bp), intermediate length spacers (7500 bp), and no spacers (in which case the ssDNA strands were directly grafted to the colloids). In all three cases, the same ssDNA pairs were used. However, confocal microscopy revealed that the aggregation behavior is very different. Upon cooling, the colloids coated with short and intermediate length DNAs undergo a phase transition to a dense amorphous phase that undergoes structural arrest shortly after percolation. In contrast, the colloids coated with the longest DNA systematically form finite-sized clusters. We speculate that the difference is due to the fact that very long DNA can easily be stretched by the amount needed to make only intracluster bonds, and in contrast, colloids coated with shorter DNA always contain free binding sites on the outside of a cluster. The grafting density of the DNA decreases strongly with increasing spacer length. This is reflected in a difference in the temperature dependence of the aggregates: for the two systems coated with long DNA, the resulting aggregates were stable against heating, whereas the colloids coated with ssDNA alone Would dissociate upon heating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据