4.6 Article

Fluidic assembly and packing of microspheres in confined channels

期刊

LANGMUIR
卷 24, 期 7, 页码 3661-3670

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la703840w

关键词

-

向作者/读者索取更多资源

We study fluidic assembly and packing of spherical particles in rectilinear microchannels that are terminated by a flow constriction. First, we introduce a method for active assembly of particles in the confined microchannels by triggering a local constriction in the fluid channel using a partially closed membrane valve. This microfluidic valve allows active, on-demand particle assembly as opposed to previous passive assembly methods based on terminal channels and weirs. Second, we Study the three-dimensional assembly and packing of particles against a weir in confined rectilinear microchannels. The packings result in achiral particle chains with alternating (zigzag) structure. This Structure is characterized by a single, repeated bond angle whose components projected into the frame of the channel are quantified by confocal microscopy and image processing. Brownian dynamics simulation of the packing comprehensively delineates the range of bond angles possible in narrow, rectilinear microchannels as well as the complex dependence of these angles on the relative dimensions of the channel and particles. The simulations of the three-dimensional packings are accurately modeled by a compact theory based on trigonometric relationships. The experimentally measured bond angles show excellent agreement with the simulations, thereby validating the functional dependence of the achiral packing bond angles on channel dimensions. This functional relationship is immediately useful for the design of anisotropic particles by microfluidic synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据