4.6 Article

An interfacial oxime reaction to immobilize ligands and cells in patterns and gradients to photoactive surfaces

期刊

LANGMUIR
卷 24, 期 12, 页码 6201-6207

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la8005663

关键词

-

向作者/读者索取更多资源

We report a molecularly controlled interfacial chemoselective methodology to immobilize ligands and cells in patterns and gradients to self-assembled monolayers on gold. This strategy is based on reacting soluble ketone or aldehyde tethered ligands to surface-bound oxyamine alkeanethiols to generate a covalent oxime linkage to the surface. We characterize the kinetic behavior of the reaction on the surface with ferrocenecarboxaldehyde (FcCHO) as a model ligand. The precise extent of immobilization and therefore surface density of FcCHO on the SAM is monitored and determined by cyclic voltammetry, which shows a peudo-first-order rate constant of 0.13 min(-1). In order to generate complex surface patterns and gradients of ligands on the surface, we photoprotected the oxyamine group with nitroveratryloxycarbonyl (NVOC). We show that ultraviolet light irradiation through a patterned microfiche film reveals the oxyamine group and we characterize the rate of deprotection by immobilization of ketone containing redox active groups. Finally, we extend this strategy to show biospecific cell attachement of fibroblast cells by immobilizing ketone-GRGDS peptides in patterns. The interfacial oxime reaction is chemoselective and stable at physiological conditions (pH 7.0, 37 degrees C and may potentially be used to install ligands on the surface in the presence of attached cells to modulate the cell microenvironment to generate dynamic surfaces for monitoring changes in cell behavior in real time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据