4.6 Article

Finite-thickness-enhanced attractions for oppositely charged membranes and colloidal platelets

期刊

LANGMUIR
卷 24, 期 4, 页码 1110-1119

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la7020935

关键词

-

向作者/读者索取更多资源

Within linearized Poisson-Boltzmann theory, we study the disjoining pressure of two oppositely charged parallel objects (membranes and colloidal platelets) in a 1:1 electrolyte, with a focus on the effects of their finite thickness. This extension of the standard Gouy-Chapman model from an interacting pair of double layers to a quartet (one on each side of the two interacting objects) is shown to enhance the regime of attractive interactions significantly, in particular, when the separation and the thickness are on the order of the Debye length of the solvent, provided the dielectric mismatch between objects and solvent is not too extreme. The enhancement of attractions occurs for objects with fixed charge as well as for those that exhibit charge regulation but not for those with a constant surface potential. The underlying mechanism for this enhancement for thin objects is the transfer of net ionic charge from the electrolyte in between to the other sides. For biological membranes in water, this effect is small; however, it is due to strong image charge effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据