4.7 Article

Models based on individual level movement predict spatial patterns of genetic relatedness for two Australian forest birds

期刊

LANDSCAPE ECOLOGY
卷 26, 期 1, 页码 137-148

出版社

SPRINGER
DOI: 10.1007/s10980-010-9542-6

关键词

Animal movement; Habitat specialisation; Landscape genetics; White-browed scrubwren; Yellow-throated scrubwren; Sericornis citreogularis; Sericornis frontalis

资金

  1. CSIRO Sustainable Ecosystems
  2. Birds Australia
  3. Wildlife Preservation Society of Australia

向作者/读者索取更多资源

Fine-scale landscape change can alter dispersal patterns of animals, thus influencing connectivity or gene flow within a population. Furthermore, dispersal patterns of different species may be influenced by the landscape in varying ways. Our research first aimed to examine whether the spatial genetic structure within populations of closely related bird species differs in response to the same landscape. Second, we examined whether individual-level movement characteristics are a mechanistic driver of these differences. We generated a priori predictions of how landscape features will influence dispersal (particularly the response of individuals to habitat boundaries both natural and human-induced) based on a movement model developed by Fahrig (Funct Ecol 21:1003-1015, 2007). This model allowed us to predict genetic relatedness patterns in populations of two passerine bird species with different life-history traits from Queensland, Australia (yellow-throated scrubwren Sericornis citreogularis, a habitat specialist; white-browed scrubwren Sericornis frontalis, a habitat generalist). We quantified our predictions using cost-distance modelling and compared these to observed pairwise genetic distances (a (r) ) between individuals as calculated from microsatellite markers. Mantel tests showed that our a priori models correlated with genetic distance. Euclidean distance was most closely correlated to genetic distance for the generalist species (r = 0.093, P = 0.002), and landscape models that included the avoidance of unsuitable habitat were best for the specialist species (r = 0.107, P = 0.001). Our study showed that predictable movement characteristics may be the mechanism driving differences in genetic relatedness patterns within populations of different bird species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据