4.7 Article

Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect

期刊

LANDSCAPE ECOLOGY
卷 24, 期 5, 页码 657-672

出版社

SPRINGER
DOI: 10.1007/s10980-009-9340-1

关键词

Mountain pine beetle; Dendroctonus ponderosae; Growth rate prediction; Phenology; Temperature change; Insect outbreak

向作者/读者索取更多资源

It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a model of population success measured using annual growth rates derived from aerially detected counts of infested trees. This model bridges the gap between phenology predictions and population viability/growth rates for mountain pine beetle. The model is parameterized and compared with 8 years of data from a recent outbreak in central Idaho, and is driven using measured tree phloem temperatures from north and south bole aspects and cumulative forest area impacted. A model driven by observed south-side phloem temperatures and that includes a correction for forest area previously infested and killed is most predictive and generates realistic parameter values of mountain pine beetle fecundity and population growth. Given that observed phloem temperatures are not always available, we explore a variety of methods for using daily maximum and minimum ambient temperatures in model predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据