4.7 Article

Use of landscape pattern metrics and multiscale data in aquatic species distribution models: a case study of a freshwater mussel

期刊

LANDSCAPE ECOLOGY
卷 24, 期 7, 页码 943-955

出版社

SPRINGER
DOI: 10.1007/s10980-009-9373-5

关键词

Landscape; Spatial pattern; Boosted regression trees; Freshwater mussels; Multiscale; Modeling

资金

  1. KDFWR

向作者/读者索取更多资源

The distributions of freshwater mussels are controlled by landscape factors operating at multiple spatial scales. Changes in land use/land cover (LULC) have been implicated in severe population declines and range contractions of freshwater mussels across North America. Despite widespread recognition of multiscale influences few studies have addressed these issues when developing distribution models. Furthermore, most studies have disregarded the role of landscape pattern in regulating aquatic species distributions, focusing only on landscape composition. In this study, the distribution of Rabbitsfoot (Quadrula cylindrica) in the upper Green River system (Ohio River drainage) is modeled with environmental variables from multiple scales: subcatchment, riparian buffer, and reach buffer. Four types of landscape environment metrics are used, including: LULC pattern, LULC composition, soil composition, and geology composition. The study shows that LULC pattern metrics are very useful in modeling the distribution of Rabbitsfoot. Together with LULC compositional metrics, pattern metrics permit a more detailed analysis of functional linkages between aquatic species distributions and landscape structure. Moreover, the inclusion of multiple spatial scales is necessary to accurately model the hierarchical processes in stream systems. Geomorphic features play important roles in regulating species distributions at intermediate and large scales while LULC variables appear more influential at proximal scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据