4.4 Article

Influence of nonclimatic factors on the habitat prediction of tree species and an assessment of the impact of climate change

期刊

LANDSCAPE AND ECOLOGICAL ENGINEERING
卷 9, 期 1, 页码 111-120

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s11355-011-0183-y

关键词

Broad geographical extent; Fine spatial resolution; Habitat preference; Predictive performance; Species distribution model

资金

  1. program of the Global Environmental Research of Japan [S-4 and S-8]
  2. Ministry of the Environment

向作者/读者索取更多资源

To determine the influence of nonclimatic factors on predicting the habitats of tree species and an assessment of climate change impacts over a broad geographical extent at about 1 km resolution, we investigated the predictive performance for models with climatic factors only (C-models) and models with climatic and nonclimatic factors (CN-models) using seven tree species in Japan that exhibit different ecological characteristics such as habitat preference and successional traits. Using a generalized additive model, the prediction performance was compared by prediction accuracy [area under the operating characteristic curve (AUC)], goodness of fit, and potential habitat maps. The results showed that the CN-models had higher predictive accuracy, higher goodness of fit, smaller empty habitats, and more finely defined borders of potential habitat than those of the C-models for all seven species. The degree of the total contribution of the nonclimatic variables to prediction performance also varied among the seven species. These results suggest that nonclimatic factors also play an important role in predicting species occurrence when measured to this extent and resolution, that the magnitude of model improvement is larger for species with specific habitat preferences, and that the C-models cannot predict the land-related habitats that exist for almost all species. Climate change impacts were overestimated by C-models for all species. Therefore, C-model outcomes may lead to locally ambiguous assessment of the impact of climate change on species distribution. CN-models provide a more accurate and detailed assessment for conservation planning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据