4.6 Article

Wild-type p53-modulated autophagy and autophagic fibroblast apoptosis inhibit hypertrophic scar formation

期刊

LABORATORY INVESTIGATION
卷 98, 期 11, 页码 1423-1437

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41374-018-0099-3

关键词

-

资金

  1. National Natural Science Foundation of China [81571914, 81741105]
  2. Natural Science Foundation of Shaanxi Province of China [2015JM8452]

向作者/读者索取更多资源

Hypertrophic scarring is a serious fibrotic skin disease, and the abnormal activation of hypertrophic scar fibroblasts (HSFs) intensifies its pathogenesis. Our previous studies have demonstrated that the dysregulation of autophagy in HSFs is associated with fibrosis. However, knowledge regarding the regulation of HS fibrosis by p53-modulated autophagy is limited. Here, we investigated the effect of p53-modulated autophagy on HS fibrosis. The overexpression of wtp53 (Adp53) promoted autophagic capacity and inhibited collagen and alpha-SMA expression in HSFs. In contrast, LC3 (AdLC3) overexpression did not suppress Col 1, Col 3, or alpha-SMA expression, but LC3 (shLC3) knockdown downregulated collagen expression. Adp53-modulated autophagy altered Bcl-2 and Bcl-xL expression, but AdLC3 affected only Bcl-xL expression. Silencing Bcl-xL suppressed collagen expression, but autophagy was also inhibited. Flow cytometry showed that the silencing of Bcl-2 (sibcl-2), Bcl-xL (sibcl-xL), and Adp53 significantly increased apoptosis in the HSFs. Therefore, wtp53 inhibited fibrosis in the HSFs by modulating autophagic HSF apoptosis; moreover, the inhibition of autophagy by sibcl-xL had antifibrotic effects. In addition, treatment with Adp53, AdLC3, shLC3, sibcl-2, and sibcl-xL reduced scar formation in a rabbit ear scar model. These data confirm that wtp53-modulated autophagy and autophagic HSF apoptosis can serve as potential molecular targets for HS therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据