4.6 Article

Targeted intestinal epithelial deletion of the chemokine receptor CXCR4 reveals important roles for extracellular-regulated kinase-1/2 in restitution

期刊

LABORATORY INVESTIGATION
卷 91, 期 7, 页码 1040-1055

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/labinvest.2011.77

关键词

chemokine receptor; conditional knockout; ERK1/2; intestinal barrier; restitution; wound healing

资金

  1. National Institutes of Health [NIDDK DK02808, DK083209, DK062066]
  2. Crohn's and Colitis Foundation of America
  3. Medical College of Wisconsin Digestive Disease Center
  4. NIH-NRSA [F32DK083209]

向作者/读者索取更多资源

Barrier defects and/or alterations in the ability of the gut epithelium to repair itself are critical etiological mechanisms of gastrointestinal disease. Our ongoing studies indicate that the chemokine receptor CXCR4 and its cognate ligand CXCL12 regulate intestinal-epithelial barrier maturation and restitution in cell culture models. Gene-deficient mice lacking CXCR4 expression specifically by the cells of the intestinal epithelium were used to test the hypothesis that CXCR4 regulates mucosal barrier integrity in vivo. Epithelial expression of CXCR4 was assessed by RT-PCR, Southern blot, immunoblot and immunohistochemistry. In vivo wounding assays were performed by addition of 3% dextran sodium sulfate (DSS) in drinking water for 5 days. Intestinal damage and DAI scores were assessed by histological examination. Extracellular-regulated kinase (ERK) phosphorylation was assessed in vivo by immunoblot and immunofluorescence. CXCR4 knockdown cells were established using a lentiviral approach and ERK phosphorylation was assessed. Consistent with targeted roles in restitution, epithelium from patients with inflammatory bowel disease indicated that CXCR4 and CXCL12 expression was stable throughout the human colonic epithelium. Conditional CXCR4-deficient mice developed normally, with little phenotypic differences in epithelial morphology, proliferation or migration. Re-epithelialization was absent in CXCR4 conditional knockout mice following acute DSS-induced inflammation. In contrast, heterozygous CXCR4-depleted mice displayed significant improvement in epithelial ulcer healing in acute and chronic inflammation. Mucosal injury repair was correlated with ERK1/2 activity and localization along the crypt-villus axis, with heterozygous mice characterized by increased ERK1/2 activation. Lentiviral depletion of CXCR4 in IEC-6 cells similarly altered ERK1/2 activity and prevented chemokine-stimulated migration. Taken together, these data indicate that chemokine receptors participate in epithelial barrier responses through coordination of the ERK1/2 signaling pathway. Laboratory Investigation (2011) 91, 1040-1055; doi:10.1038/labinvest.2011.77; published online 2 May 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据