4.7 Article

Surface topography and hydrophilicity regulate macrophage phenotype in milled microfluidic systems

期刊

LAB ON A CHIP
卷 18, 期 19, 页码 3011-3017

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8lc00431e

关键词

-

资金

  1. Biology of Aging and Age Related Diseases T32 Training Grant [2T32AG000213-34]
  2. NIH R01 [CA185251]
  3. University of Wisconsin State Economic Engagement & Development (SEED) Research Program
  4. Prostate Cancer Foundation/Movember Challenge Award

向作者/读者索取更多资源

Micromilling is an underutilized technique for fabricating microfluidic platforms that is well-suited for the diverse needs of the biologic community. This technique, however, produces culture surfaces that are considerably rougher than in commercially available culture platforms and the hydrophilicity of these surfaces can vary considerably depending on the choice of material. In this study, we evaluated the impact of surface topography and hydrophilicity in milled microfluidic devices on the cellular phenotype and function of primary human macrophages. We found that the rough culture surface within micromilled systems affected the phenotype of macrophages cultured in these devices. However, the presence, type, and magnitude of this effect was dependent on the surface hydrophilicity as well as exposure to chemical polarization signals. These findings confirm that while milled microfluidic systems are an effective platform for culture and analysis of primary macrophages, the topography and hydrophilicity of the culture surface within these systems should be considered in the planning and analysis of any macrophage experiments in which phenotype is relevant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据