4.7 Article

Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method

期刊

LAB ON A CHIP
卷 14, 期 14, 页码 2499-2504

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4lc00290c

关键词

-

资金

  1. Progetto Bandiera La Fabbrica del Futuro - Plastic lab-on-chips for the optical manipulation of single cells (PLUS)

向作者/读者索取更多资源

Imaging through turbid media is a challenging topic. A liquid is considered turbid when dispersed particles provoke strong light scattering, thus destroying the image formation by any standard optical system. Generally, colloidal solutions belong to the class of turbid media since dispersed particles have dimensions ranging between 0.2 mu m and 2 mu m. However, in microfluidics, another relevant issue has to be considered in the case of flowing liquid made of a multitude of occluding objects, e.g. red blood cells (RBCs) flowing in veins. In such a case instead of severe scattering processes unpredictable phase delays occur resulting in a wavefront distortion, thus disturbing or even hindering the image formation of objects behind such obstructing layer. In fact RBCs can be considered to be thin transparent phase objects. Here we show that sharp amplitude imaging and phase-contrast mapping of cells hidden behind biological occluding objects, namely RBCs, is possible in harsh noise conditions and with a large field-of view by Multi-Look Digital Holography microscopy (ML-DH). Noteworthy, we demonstrate that ML-DH benefits from the presence of the RBCs, providing enhancement in terms of numerical resolution and noise suppression thus obtaining images whose quality is higher than the quality achievable in the case of a liquid without occlusive objects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据