4.7 Article

An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics

期刊

LAB ON A CHIP
卷 14, 期 20, 页码 4076-4084

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4lc00443d

关键词

-

资金

  1. National Science Foundation [DBI-1065513]
  2. Div Of Biological Infrastructure
  3. Direct For Biological Sciences [1063315] Funding Source: National Science Foundation

向作者/读者索取更多资源

Considerable effort has recently been directed toward the miniaturization of quantitative-polymerase-chain-reaction (qPCR) instrumentation in an effort to reduce both cost and form factor for point-of-care applications. Considerable gains have been made in shrinking the required volumes of PCR reagents, but resultant prototypes retain their bench-top form factor either due to heavy heating plates or cumbersome optical sensing instrumentation. In this paper, we describe the use of complementary-metal-oxide semiconductor (CMOS) integrated circuit (IC) technology to produce a fully integrated qPCR lab-on-chip. Exploiting a 0.35 mu m high-voltage CMOS process, the IC contains all of the key components for performing qPCR. Integrated resistive heaters and temperature sensors regulate the surface temperature of the chip to an accuracy of 0.45 degrees C. Electrowetting-on-dielectric microfluidics are actively driven from the chip surface, allowing for droplet generation and transport down to volumes less than 1.2 nanoliter. Integrated single-photon avalanche diodes (SPADs) are used for fluorescent monitoring of the reaction, allowing for the quantification of target DNA with more than four-orders-of-magnitude of dynamic range and sensitivities down to a single copy per droplet. Using this device, reliable and sensitive real-time proof-of-concept detection of Staphylococcus aureus (S. aureus) is demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据