4.7 Article

Dynamics of a microliquid prism actuated by electrowetting

期刊

LAB ON A CHIP
卷 13, 期 2, 页码 274-279

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2lc41024a

关键词

-

资金

  1. Samsung Electronics
  2. National Research Foundation of Korea [2011-0030744, 2012-008023]

向作者/读者索取更多资源

A microliquid prism is a microchannel filled with two immiscible liquids, whose interface acts as a refractive surface. To steer a light beam that constructs optical images, the interface profile or the contact angle is modulated through electrowetting on a dielectric. Accurate, yet agile actuation of the liquid prism critically depends on the understanding of dynamics of the fluid interface. Here we fabricate liquid prisms, visualize the shape evolution of the interface, and theoretically model its dynamics. By comparing the magnitude of capillary forces to those of viscous, inertial and hydrostatic forces, we find that the meniscus motion within submillimetric channels is dominated by the capillary effect. The theoretical predictions for microscale meniscus dynamics are shown to agree well with the experimental measurements. We then discuss the formation of waves in millimetric liquid prisms, which may significantly limit fast and reliable operation of the optofluidic device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据