4.7 Article

Engineering and analysis of surface interactions in a microfluidic herringbone micromixer

期刊

LAB ON A CHIP
卷 12, 期 15, 页码 2634-2637

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2lc40356k

关键词

-

向作者/读者索取更多资源

We developed a computational model and theoretical framework to investigate the geometrical optimization of particle-surface interactions in a herringbone micromixer. The enhancement of biomolecule- and particle-surface interactions in microfluidic devices through mixing and streamline disruption holds promise for a variety of applications. This analysis provides guidelines for optimizing the frequency and specific location of surface interactions based on the flow pattern and relative hydraulic resistance between a groove and the effective channel. The channel bottom, i.e., channel surface between grooves, was identified as the dominant location for surface contact. In addition, geometries that decrease the groove-to-channel hydraulic resistance improve contact with the channel top. Thus, herringbone mixers appear useful for a variety of surface-interaction applications, yet they have largely not been employed in an optimized fashion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据