4.7 Article

Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells

期刊

LAB ON A CHIP
卷 12, 期 21, 页码 4388-4396

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2lc20750h

关键词

-

资金

  1. Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore)

向作者/读者索取更多资源

Herein we present a lab-chip device for highly efficient and rapid detection of circulating tumor cells (CTCs) from whole blood samples. The device utilizes a microfabricated silicon microsieve with a densely packed pore array (10(5) pores per device) to rapidly separate tumor cells from whole blood, utilizing the size and deformability differences between the CTCs and normal blood cells. The whole process, including tumor cell capture, antibody staining, removal of unwanted contaminants and immunofluorescence imaging, was performed directly on the microsieve within an integrated microfluidic unit, interconnected to a peristaltic pump for fluid regulation and a fluorescence microscope for cell counting. The latter was equipped with a dedicated digital image processing program which was developed to automatically categorize the captured cells based on the immunofluorescence images. A high recovery rate of >80% was achieved with defined numbers of MCF-7 and HepG2 cancer cells spiked into human whole blood and filtered at a rapid flow rate of 1 mL min(-1). The device was further validated with blood drawn from various cancer patients (8 samples). The whole process, from sample input to result, was completed in 1.5 h. In addition, we have also successfully demonstrated on-microsieve fluorescence in situ hybridization for single cell molecular analysis. This simple method has great potential to supplant existing complex CTC detection schemes for cancer metastasis analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据