4.7 Article

Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow

期刊

LAB ON A CHIP
卷 11, 期 8, 页码 1477-1483

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0lc00711k

关键词

-

资金

  1. Ministry of Education, Science and Technology [20100026155]
  2. Ministry of Education, Science and Technology of Korea [2010K001055]

向作者/读者索取更多资源

This study presents a simple microfluidic approach to the rapid fabrication of complex-shaped microfibers (e.g., single hollow, double hollow, and microbelt), with highly uniform structures, based on a combination of the spontaneous formation of polymeric jet streams and in situ photopolymerization. Two laminar flows of a photocurable fluid and a liquid template (nonpolymerizing fluid) spontaneously form jet streams in equilibrium states in microfluidic channels because of the minimization of the interfacial energy between the two fluids. The formation of the jet streams strongly depends on the spreading coefficients and the evolution time along the downstream of the microfluidic system. Thus, the simple control of the spreading coefficients can guide microfibers into various shapes. The sizes of the core and shell of the hollow fibers can also be readily manipulated by the flow rates of the polymerizing fluid and the liquid template phase. Asymmetric hollow fibers can also be produced in different evolutionary states in the microfluidic system. The microfluidic approach shown here represents a significant step toward the easy fabrication of microfibers with readily controllable structures and geometries. We anticipate that this novel fabrication approach and the prediction method based on spreading coefficients presented in this work can be applied to produce a wide variety of functional microfibrous materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据