4.7 Article

Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries

期刊

LAB ON A CHIP
卷 11, 期 22, 页码 3774-3784

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1lc20628a

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Graduate Scholarship

向作者/读者索取更多资源

When droplets enter a junction they sort to the channel with the highest flow rate at that instant. Transport is regulated by a discrete time-delayed feedback that results in a highly periodic behavior where specific patterns can continue to cycle indefinitely. Between these highly ordered regimes are chaotic structures where no pattern is evident. Here we develop a model that describes droplet sorting under various asymmetries: branch geometry (length, cross-section), droplet resistance and pressures. First, a model is developed based on the continuum assumption and then, with the assistance of numerical simulations, a discrete model is derived to predict the length and composition of the sorting pattern. Furthermore we derive all unique sequences that are possible for a given distribution and develop a preliminary estimation of why chaotic regimes form. The model is validated by comparing it to numerical simulations and results from microfluidic experiments in PDMS chips with good agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据