4.7 Article

Nanochannel confinement: DNA stretch approaching full contour length

期刊

LAB ON A CHIP
卷 11, 期 10, 页码 1721-1729

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0lc00680g

关键词

-

资金

  1. National Science Foundation, Nanoscale Science and Engineering Center (NSEC
  2. USA)
  3. National Institutes of Health, Human Genome Research Institute (NHGRI
  4. USA)
  5. MEST [2010-0015392, 2010-0028226, 2010K001054]
  6. Korea Science and Engineering Foundation (KOSEF) [R15-2008-006-03002-0]
  7. GIST
  8. Korea government (MEST) [2009-0077005]
  9. Korea Institute of Science and Technology Information [KSC-2009-S01-0015]
  10. Kwangwoon University
  11. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [R01HG000225] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Fully stretched DNA molecules are becoming a fundamental component of new systems for comprehensive genome analysis. Among a number of approaches for elongating DNA molecules, nanofluidic molecular confinement has received enormous attentions from physical and biological communities for the last several years. Here we demonstrate a well-optimized condition that a DNA molecule can stretch almost to its full contour length: the average stretch is 19.1 mu m +/- 1.1 mu m for YOYO-1 stained lambda DNA ( 21.8 mu m contour length) in 250 nm x 400 nm channel, which is the longest stretch value ever reported in any nanochannels or nanoslits. In addition, based on Odijk's polymer physics theory, we interpret our experimental findings as a function of channel dimensions and ionic strengths. Furthermore, we develop a Monte Carlo simulation approach using a primitive model for the rigorous understanding of DNA confinement effects. Collectively, we present a more complete understanding of nanochannel confined DNA stretching via the comparisons to computer simulation results and Odijk's polymer physics theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据