4.7 Article

Smart' polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving

期刊

LAB ON A CHIP
卷 10, 期 4, 页码 462-469

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b916566e

关键词

-

资金

  1. NanoPLASMA [NMP-CT-2006-016424]

向作者/读者索取更多资源

We demonstrate a mass-production-amenable technology for fabrication, surface modification and multifunction integration in polymeric microfluidic devices, namely direct lithography on the polymeric substrate followed by polymer plasma etching, and selective plasma deposition. We apply the plasma processing technology to fabricate polymeric microfluidics in poly(methyl methacrylate) (PMMA) and poly(ether ether ketone) (PEEK). First, deep anisotropic O-2 plasma etching is utilized to pattern the polymer via an in situ, highly etch-resistant, thin, Si-containing photoresist, or via a thick organic photoresist. Absolute control of surface roughness (from smooth to very rough), and the production of stable-in-time (slowly ageing) superhydrophilic microchannels are demonstrated. Second, we demonstrate the spontaneous capillary pumping through such rough, superhydrophilic plasma-etched microchannels in contrast to smooth ones, even 5 weeks after fabrication. Third, by using C4F8 fluorocarbon plasma deposition through a stencil mask, we produce superhydrophobic patches inside the microchannels, and use them as passive valves. Our approach proposes smart'' multifunctional microfluidics fabricated by a plasma technology toolbox.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据