4.7 Article

Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive

期刊

LAB ON A CHIP
卷 10, 期 16, 页码 2115-2121

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c004436a

关键词

-

向作者/读者索取更多资源

In the fields of MicroElectroMechanical Systems (MEMS) and Lab On a Chip (LOC), a device is often fabricated using diverse substrates which are processed separately and finally assembled together using a bonding process to yield the final device. Here we describe and demonstrate a novel straightforward, rapid and low-temperature bonding technique for the assembly of complete microfluidic devices, at the chip level, by employing an intermediate layer of gluing material. This technique is applicable to a great variety of materials (e.g., glass, SU-8, parylene, UV-curable adhesive) as demonstrated here when using NOA 81 as gluing material. Bonding is firstly characterized in terms of homogeneity and thickness of the gluing layer. Following this, we verified the resistance of the adhesive layer to various organic solvents, acids, bases and conventional buffers. Finally, the assembled devices are successfully utilized for fluidic experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据