4.7 Article

Wet-etching of structures with straight facets and adjustable taper into glass substrates

期刊

LAB ON A CHIP
卷 10, 期 4, 页码 494-498

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b912770d

关键词

-

资金

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. Canada Foundation for Innovation (CFI)
  3. VRQ

向作者/读者索取更多资源

Wet etching of glass by hydrofluoric acid is widely used in microfabrication, but is limited by the isotropic nature of the process that leads to rounded sidewalls and a 90 degrees angle between the etch front and the surface of the substrate. For many applications such as microvalving, or for further processing such as spin-coating, well controlled, gently sloping sidewalls are often preferred. Here, we present a new approach for forming straight facets and for adjusting the sidewall angle in wet-etched glass substrates by controlling the lateral dissolution of an etch mask during etching. The etch mask comprises a Ti-Au bilayer where Au serves to protect the Ti. During isotropic etching of glass by HF the Ti layer is etched away laterally at the same time, which leads to straight, gently sloping sidewalls. We introduce two methods for controlling the sidewall angle. The first one is based on adjusting the thickness of Ti which controls the lateral etch rate, and thus the angle; the thinner the Ti, the slower its lateral etch rate and the steeper the angle in the etched glass. The second method involves a cathodic bias applied to the Ti-Au etch mask which again regulates the dissolution rate of Ti; the more negative the bias the slower the lateral etch rate. Both methods offer accurate control of the sidewall angle over a wide range, can be readily integrated into existing fabrication processes, and will be particularly useful for making channels with trapezoidal cross-sections, valve seats with gentle profiles, or for patterning electrodes across and inside of microfluidic channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据