4.7 Article

Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics

期刊

LAB ON A CHIP
卷 10, 期 5, 页码 598-609

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b914174j

关键词

-

资金

  1. NSF [NIRT 0608863, PHY0750049]
  2. La Jolla Interfaces in Science Program
  3. Direct For Mathematical & Physical Scien [0750049] Funding Source: National Science Foundation

向作者/读者索取更多资源

Studies of the kinetics of biochemical reactions, especially of folding of proteins and RNA, are important for understanding the function of biomolecules and processes in live cells. Many biochemical reactions occur rapidly and thus need to be triggered on very short time scales for their kinetics to be studied, which is often accomplished by mixing in a turbulent flow. More rapid and sample-efficient mixing is achieved in laminar flow in a microfluidic device, in which the sample is two-dimensionally (2D) focused to a thin sheet. Here we describe the design and operation of an ultrafast microfluidic mixer with three-dimensional (3D) flow focusing. The confinement of a 3D-focused sample to a narrow stream near the middle of a microchannel renders its velocity nearly uniform and makes it possible to monitor the reaction kinetics without exclusion of any parts of the sample. Hence, the sample consumption is substantially reduced and the fluorescence of the sample can be monitored without a confocal setup. Moreover, the 3D-focusing allows facile measurements of velocity of the sample with a high spatial resolution using a specially developed technique based on epi-fluorescence imaging. The data on the velocity vs. position are used to precisely calibrate the conversion between position and the reaction time, which is essential for accurate kinetic measurements. The device performs mixing on a 10 mu s scale, which is comparable to that of the laminar mixers with 2D focusing. Unlike previous ultrafast laminar mixers, which were machined in hard materials, the present microfluidic device is made of a single cast of poly(dimethylsiloxane), PDMS, and is thus simpler and less expensive to manufacture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据