4.7 Article

A 1.5 mu L microbial fuel cell for on-chip bioelectricity generation

期刊

LAB ON A CHIP
卷 9, 期 21, 页码 3076-3081

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b910586g

关键词

-

资金

  1. Institute of Technology
  2. U. S. Department of Energy [DE-FG02-02ER46006]
  3. U. S. Army Research Office [W911NF-09-D0001]
  4. Institute for Collaborative Biotechnologies
  5. UCSB's Nanofabrication Laboratory
  6. NSF
  7. NNIN
  8. MRL
  9. MRSEC Program of the National Science Foundation [DMR05-20415]

向作者/读者索取更多资源

We have developed a dual-chamber microfluidic microbial fuel cell (MFC) system that allows on-chip bacterial culture and conversion of bacterial metabolism into electricity. The micro-MFC contains a vertically stacked 1.5 mu L anode chamber and 4 mu L cathode chamber, and represents the smallest MFC device to our knowledge. Microfluidic deliveries of growth medium and catholyte were achieved in separate flow channels without cross-channel mass exchange. After inoculation of electrogenic Shewanella oneidensis strain MR-1, current generation was observed on an external load for up to two weeks. Current production was repeatable with replenishment of organic substrates. A maximum current density of 1300 A/m(3) and power density of 15 W/m(3) were achieved. Electron microscopic studies confirmed large-scale, uniform biofilm growth on the gold anode, and suggested that the enhanced cell/ anode interaction in the small volume may accelerate start-up. Our result demonstrates a versatile platform for studying the fundamental issues in MFCs on the micro-scale, and suggests the possibility of powering nanodevices using on-chip bioenergy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据