4.7 Article

On a chip demonstration of a functional role for odorant binding protein in the preservation of olfactory receptor activity at high odorant concentration

向作者/读者索取更多资源

The molecular mechanisms underlying odorant detection have been investigated using the chip based SPR technique by focusing on the dynamic interactions between transmembrane Olfactory Receptor OR1740, odorant ligands and soluble Odorant-Binding Protein (OBP-1F). The OR1740 present in the lipid bilayer of nanosomes derived from transformed yeasts specifically bound OBP-1F. The receptor preferential odorant ligand helional released bound OBP-1F from the OR-OBP complex, while unrelated odorants failed to do so. OBP-1F modified the functional OR1740 dose-response to helional, from a bell-shaped to a saturation curve, thus preserving OR activity at high ligand concentration. This unravels an active role for OBPs in olfaction, in addition to passive transport or a scavenger role. This sensorchip technology was applied to assessing native OBP-1F in a biological sample: rat olfactory mucus also displayed significant binding to OR1740 nanosomes, and the addition of helional yielded the dissociation of mucus OBP from the receptor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据