4.4 Article

Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction

期刊

PSYCHOPHARMACOLOGY
卷 232, 期 21-22, 页码 3935-3945

出版社

SPRINGER
DOI: 10.1007/s00213-015-4017-8

关键词

Mouse; Hippocampus; Delayed nonmatching-to-location; Touchscreen operant chamber; Spatial working memory; Spatial pattern separation

资金

  1. Ministry of Health & Welfare, Republic of Korea [HI11C1183]
  2. Medical Research Council/Wellcome Trust [089703/Z/09/Z]
  3. Alzheimer's Research UK [ART/ESG2010/1]
  4. Innovative Medicine Initiative Joint Undertaking [115008]
  5. European Union
  6. MRC [G1000183, MC_G1000734] Funding Source: UKRI
  7. Alzheimers Research UK [ART-ESG2010-1] Funding Source: researchfish
  8. Medical Research Council [G1000183B, G0001354B, G1000183, MC_G1000734, G0001354] Funding Source: researchfish

向作者/读者索取更多资源

The hippocampus is implicated in many of the cognitive impairments observed in conditions such as Alzheimer's disease (AD) and schizophrenia (SCZ). Often, mice are the species of choice for models of these diseases and the study of the relationship between brain and behaviour more generally. Thus, automated and efficient hippocampal-sensitive cognitive tests for the mouse are important for developing therapeutic targets for these diseases, and understanding brain-behaviour relationships. One promising option is to adapt the touchscreen-based trial-unique nonmatching-to-location (TUNL) task that has been shown to be sensitive to hippocampal dysfunction in the rat. This study aims to adapt the TUNL task for use in mice and to test for hippocampus-dependency of the task. TUNL training protocols were altered such that C57BL/6 mice were able to acquire the task. Following acquisition, dysfunction of the dorsal hippocampus (dHp) was induced using a fibre-sparing excitotoxin, and the effects of manipulation of several task parameters were examined. Mice could acquire the TUNL task using training optimised for the mouse (experiments 1). TUNL was found to be sensitive to dHp dysfunction in the mouse (experiments 2, 3 and 4). In addition, we observed that performance of dHp dysfunction group was somewhat consistently lower when sample locations were presented in the centre of the screen. This study opens up the possibility of testing both mouse and rat models on this flexible and hippocampus-sensitive touchscreen task.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据