4.7 Article

Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels

期刊

LAB ON A CHIP
卷 8, 期 9, 页码 1557-1563

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b803967d

关键词

-

资金

  1. Italian Institute of Technology
  2. Italian Ministry of Universities and Research [RBLA03ER38, RBIN045NMB]

向作者/读者索取更多资源

This paper presents prototypical microfluidic devices made by hybrid microchannels based on piezoelectric LiNbO3 and polydimethylsiloxane. This system enables withdrawing micropumping by acoustic radiation in microchannels. The withdrawing configuration, integrated on chip, is here quantitatively investigated for the first time, and found to be related to the formation and coalescence dynamics of droplets within the microchannel, primed by surface acoustic waves. The growth dynamics of droplets is governed by the water diffusion on LiNbO3, determining the advancement of the fluid front. Observed velocities are up to 2.6 mm s(-1) for 30 dBm signals applied to the interdigital transducer, corresponding to tens of nl s(-1), and the micropumping dynamics is described by a model taking into account an acoustic power exponentially decaying upon travelling along the microchannel. This straighforward and flexible micropumping approach is particularly promising for the withdrawing of liquids in lab-on-chip devices performing cycling transport of fluids and biochemical reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据