4.7 Article

Microfluidic flow-encoded switching for parallel control of dynamic cellular microenvironments

期刊

LAB ON A CHIP
卷 8, 期 1, 页码 107-116

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b716962k

关键词

-

资金

  1. NIAID NIH HHS [AI063795] Funding Source: Medline
  2. NIBIB NIH HHS [P41 EB002503] Funding Source: Medline
  3. NIGMS NIH HHS [GM065474] Funding Source: Medline
  4. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI063795] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [P41EB002503] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM065474] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The temporal pattern of a biological stimulus is an important determinant of the resulting cellular response. We present a microfluidic parallel perfusion culture system for controlling the dynamics of soluble cell microenvironments while simultaneously performing live-cell imaging of cellular responses. A Flow-encoded Switching'' (FES) design strategy is developed to simultaneously deliver many different temporal profiles of stimuli, including pulse train widths, lengths, and frequencies, to downstream adherent cells using a single input control. The design strategy uses principles of laminar flow and diffusion-limited mixing to encode the state of the network (the instantaneous stimulus concentrations in each channel) into the ratio of two flow rates, which is controlled by a single differential pressure. To demonstrate the utility of this experimental system, we investigated the effect of dynamic stimuli on NFkB transcriptional activation and cell fate determination. Our results illustrate that transcriptional responses and cell fate decisions depend both quantitatively and qualitatively on the timing of the stimulus. In summary, by encoding dynamic stimuli in a single input pressure, microfluidic flow-encoded switching offers a scalable experimental method for systematically probing the functional significance of temporally patterned cellular environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据