4.2 Article

Bis is Induced by Oxidative Stress via Activation of HSF1

期刊

KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY
卷 18, 期 5, 页码 403-409

出版社

KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY
DOI: 10.4196/kjpp.2014.18.5.403

关键词

Bis; HSF1; Oxidative stress; ROS

资金

  1. National Research Foundation of Korea (NRF) [2012R1A1A2007589, 2012R1A5A2047939]
  2. National Research Foundation of Korea [2012R1A1A2007589] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as H2O2 treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by H2O2, accompanied by increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据